
Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

1

Phaser And StampedLock
Concurrency Synchronizers

Dr Heinz M. Kabutz
www.javaspecialists.eu

 Last updated 2013-04-23

© 2013 Heinz Kabutz – All Rights Reserved

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Note: PDF Presentation Of The Talks

What is included
– The slides as I presented them at JAX in Mainz on 24th Apr 2013

What is excluded
– Extra slides that explain in more detail how the Phaser and

StampedLock work

– These are available on request if you fill in this form
• http://www.javaspecialists.eu/talks/jax13/stampedlock

2

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Heinz Kabutz

Brief Biography
– German from Cape Town, now lives in Chania on island of Crete

– The Java Specialists' Newsletter
• 132 countries

– Java Champion since 2005

– JavaOne Rock Star 2012

3

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

4
Join us here for an advanced Java course!

18-21 June 2013

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Why Synchronizers?

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Why Synchronizers?

Synchronizers keep shared mutable state consistent
– Don't need if we can make state immutable or unshared

But many applications need large amounts of state
– Immutable would stress the garbage collector

– Unshared would stress the memory volume

Some applications have hash maps of hundreds of GB!

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Coarse Grained Locking

Overly coarse-grained locking means the CPUs are
starved for work
– Only one core is busy at a time

 Took 51 seconds to complete

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Fine Grained Locking

 "Synchronized" causes voluntary context switches
– Thread cannot get the lock, so it is parked

• Gives up its allocated time quantum

 Took 745 seconds to complete

 It appears that system time is 50% of the total time
– So should this not have taken the same elapsed time as before?

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Independent Tasks With No Locking

 Instead of shared mutable state, every thread uses only
local data and in the end we merge the results

 Took 28 seconds to complete with 100% utilization

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Nonblocking Algorithms

 Lock-based algorithms can cause scalability issues
– If a thread is holding a lock and is swapped out, no one can progress

Definitions of types of algorithms
– Nonblocking: failure or suspension of one thread, cannot cause

another thread to fail or be suspended

– Lock-free: at each step, some thread can make progress

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phaser

New synchronizer compatible with Fork/Join

5

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Synchronizers - Structural Properties

Encapsulate state that determines whether arriving
threads should be allowed to pass or forced to wait

Provide methods to manipulate that state

Provide methods to wait (efficiently) for the synchronizer
to enter a desired state

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CountDownLatch

A latch is a synchronizer that blocks until it reaches its
terminal state, at which point it allows all threads to pass

Once it reaches the terminal state it remains open forever

Ensures that activities do no start until all of the
dependent activities have completed. For example:
– All resources have been initialized

– All services have been started

– All horses are at the gate

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: CountDownLatch

public class CountDownLatch {

 CountDownLatch(int count)

 void await() throws InterruptedException
 boolean await(long timeout, TimeUnit unit)
 throws InterruptedException

 void countDown()
}

6

Fixed number of
initial permits

A thread can wait for
count to reach zero

We can count down, but
never up. No reset possible.

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CountdownLatch

7

Concurrent Animation
by Victor Grazi
– www.jconcurrency.com

 Threads are waiting
until the count down
latch is zero
– Then they immediately

continue running

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Sample: CountDownLatch

8

Service getService()
 throws InterruptedException {
 serviceCountDown.await();
 return service;
}

void startDb() {
 db = new Database();
 db.start();
 serviceCountDown.countDown();
}

void startMailServer() {
 mail = new MailServer();
 mail.start();
 serviceCountDown.countDown();
}

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CyclicBarrier is similar to CountDownLatch
– Group of threads blocks until all have reached the same point

– But then it is reset to the initial value

CyclicBarrier allows a fixed number of parties to
rendezvous repeatedly at a barrier point

CyclicBarrier also lets you pass a "barrier action" in the
constructor
– The Runnable is executed when the barrier is successfully passed

but before the blocked threads are released.

X

CyclicBarrier

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: CyclicBarrier

public class CyclicBarrier {
 CyclicBarrier(int parties)
 CyclicBarrier(int parties, Runnable barrierAction)

 int await() throws InterruptedException,
 BrokenBarrierException
 int await(long timeout, TimeUnit unit)
 throws InterruptedException,
 BrokenBarrierException,
 TimeoutException

 void reset()
}

X

Fixed number of
parties meet
regularly

await() waits for all of the threads to arrive

If one of the parties times out, the
barrier is broken and must be reset

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CyclicBarrier

X

Concurrent Animation
by Victor Grazi

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phasers

Mix of CyclicBarrier and CountDownLatch functionality
– But with more flexibility

Registration
– Number of parties registered may vary over time

• Same as count in count down latch and parties in cyclic barrier

– A party can register/deregister itself at any time

– In contrast, both the other mechanisms have fixed number of parties

Compatible with Fork/Join framework

9

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: Phaser Registration Methods

public class Phaser {
 Phaser(Phaser parent, int parties)

 int register()

 int bulkRegister(int parties)

10

Initial parties - both
parameters are optional

Phasers can be
arranged in tree to
reduce contention

We can change the
parties dynamically
by calling register()

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: Phaser Signal And Wait Methods

public class Phaser { (continued…)

 int arrive()
 int arriveAndDeregister()

 int awaitAdvance(int phase)

 int awaitAdvanceInterruptibly(int phase[, timeout])
 throws InterruptedException

 int arriveAndAwaitAdvance()

11

Signal only

Wait only - default
is to save interrupt

Signal and wait -
also saves interrupt

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: Phaser Action Method

public class Phaser { (continued…)
 protected boolean onAdvance(
 int phase, int registeredParties)

}

12

Override onAdvance()
to let phaser finish early

Bunch of lifecycle
methods left out

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

E.g. Coordinated Start Of Threads

We want a number of threads to start their work together
– Or as close together as possible, subject to OS scheduling

All threads wait for all others to be ready
– Once-off use

– CountDownLatch or Phaser

13

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CountDownLatch: Waiting For Threads To Start
static void runTasks(List<Runnable> tasks)
 throws InterruptedException {
 int size = tasks.size() + 1;
 final CountDownLatch latch = new CountDownLatch(size);
 for (final Runnable task : tasks) {
 new Thread() {
 public void run() {
 try {
 latch.countDown();
 latch.await();
 System.out.println("Running " + task);
 task.run();
 } catch (InterruptedException e) { /* returning */ }
 }
 }.start();
 Thread.sleep(1000);
 }
 latch.countDown();
}

14

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

CountDownLatch: Dealing With Interruptions

15

 "Saving" interruptions until we can deal with them is a lot
of work with CountDownLatch
public void run() {
 latch.countDown();
 boolean wasInterrupted = false;
 while (true) {
 try {
 latch.await();
 break;
 } catch (InterruptedException e) {
 wasInterrupted = true;
 }
 }
 if (wasInterrupted) Thread.currentThread().interrupt();
 System.out.println("Running: " + task);
 task.run();
}

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phaser: Waiting For Threads To Start

 The code for Phaser is simpler and more intuitive

16

phaser.arrive() and phaser.arriveAndAwaitAdvance() also work

static void runTasks(List<Runnable> tasks)
 throws InterruptedException {
 final Phaser phaser = new Phaser(1); // we register ourselves
 for (final Runnable task : tasks) {
 phaser.register(); // and we register all our new threads
 new Thread() {
 public void run() {
 phaser.arriveAndAwaitAdvance();
 System.out.println("Running: " + task);
 task.run();
 }
 }.start();
 Thread.sleep(1000);
 }
 phaser.arriveAndDeregister(); // we let the main thread arrive
}

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Waiting For A Set Number Of Phases
 The CyclicBarrier does not know how many times we have passed through

 The Phaser remembers the "phase" we are in

– If we go past Integer.MAX_VALUE, it resets to zero

 We do this by subclassing Phaser and overriding onAdvance()

X

private void addButtons(int buttons, final int blinks) {
 final Phaser phaser = new Phaser(buttons) {
 protected boolean onAdvance(
 int phase, int registeredParties) {
 return phase >= blinks - 1 ||
 registeredParties == 0;
 }
 };

 // ...

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Setting The Buttons A Random Color

We carry on changing color until the phaser is terminated

X

new Thread() {
 public void run() {
 Random rand = ThreadLocalRandom.current();
 try {
 do {
 Color newColor = new Color(rand.nextInt());
 changeColor(comp, newColor); // sets it with the EDT
 Thread.sleep(rand.nextInt(500, 3000));
 changeColor(comp, defaultColor);
 Toolkit.getDefaultToolkit().beep();
 Thread.sleep(2000);
 phaser.arriveAndAwaitAdvance();
 } while (!phaser.isTerminated());
 } catch (InterruptedException e) { return; }
 }
}.start();

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Sample Run With Phaser

Running with 20 buttons and 3 phases
– Note, all the phases start at the same time for the 20 threads, but

each phase ends when the color is reset to the original

– With CyclicBarrier, we would have had to count the phases ourselves

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Tiered Phasers

Phasers can be arranged in a tree structure to reduce
contention

 It is a bit complicated to understand (at least for me)
– Parent does not know what children it has

– When a child is added, parent # parties increases by 1
• If child's registered parties > 0

– Once child arrived parties == 0, one party automatically arrives at
parent

– If we use arriveAndAwaitAdvance(), we have to wait until all the
parties in the whole tree have arrived
• Thus the parties in the current phaser have to all arrive and in the

parent

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Tiered Phasers

When a child phaser has non-zero parties, then the parent
parties are incremented

 outputs

X

Phaser root = new Phaser(3);
Phaser c1 = new Phaser(root, 4);
Phaser c2 = new Phaser(root, 5);
Phaser c3 = new Phaser(c2, 0);
System.out.println(root);
System.out.println(c1);
System.out.println(c2);
System.out.println(c3);

j.u.c.Phaser[phase = 0 parties = 5 arrived = 0] (root)
j.u.c.Phaser[phase = 0 parties = 4 arrived = 0] (c1)
j.u.c.Phaser[phase = 0 parties = 5 arrived = 0] (c2)
j.u.c.Phaser[phase = 0 parties = 0 arrived = 0] (c3)

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phaser "root" Is Created With 3 Parties

X

root
parties = 3

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phaser "c1" Is Created With 4 Parties

X

root
parties = 4

c1
parties = 4

Increases parties
in "root" phaser

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Phaser "c2" Is Created With 3 Parties

X

root
parties = 5

c1
parties = 4

c2
parties = 3

Again increases parties
in "root" phaser

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

root
parties = 5

c1
parties = 4

c2
parties = 3

c3
parties = 0

Phaser "c3" Is Created With 0 Parties

X

Does not
increase parties
in "c2" phaser,
because c3's
parties == 0

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Only Synchronizer Compatible With Fork/Join

 [JavaDoc] Phasers may also be used by tasks executing
in a ForkJoinPool which will ensure sufficient parallelism
to execute tasks when others are blocked waiting for a
phase to advance.

 Fork/Join Pools do not have an upper limit on threads
– They have a parallelism level and the FJ Pool will try to have at least

that many active threads to prevent starvation

– If one of the active threads is paused waiting for a phaser, another is
simply started to maintain required parallelism
• No other wait would do that

–Condition.await(), wait(), Semaphore.acquire(),
CountDownLatch.await(), etc.

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

public class ForkJoinPhaser {
 public static void main(String[] args) {
 ForkJoinPool fjp = new ForkJoinPool();
 fjp.invoke(new PhasedAction(100, new Phaser(100)));
 System.out.println(fjp);
 }
 private static class PhasedAction extends RecursiveAction {
 private final int phases;
 private final Phaser ph;
 private PhasedAction(int phases, Phaser ph) {
 this.phases = phases; this.ph = ph;
 }
 protected void compute() {
 if (phases == 1) {
 System.out.printf("wait: %s%n", Thread.currentThread());
 ph.arriveAndAwaitAdvance();
 System.out.printf("done: %s%n", Thread.currentThread());
 } else {
 int left = phases / 2;
 int right = phases - left;
 invokeAll(new PhasedAction(left, ph),
 new PhasedAction(right, ph));
 }
 }
 }
}

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

done: Thread[ForkJoinPool-1-worker-227,5,main]
done: Thread[ForkJoinPool-1-worker-239,5,main]
done: Thread[ForkJoinPool-1-worker-197,5,main]
done: Thread[ForkJoinPool-1-worker-209,5,main]
done: Thread[ForkJoinPool-1-worker-253,5,main]
done: Thread[ForkJoinPool-1-worker-139,5,main]
done: Thread[ForkJoinPool-1-worker-167,5,main]
done: Thread[ForkJoinPool-1-worker-179,5,main]
done: Thread[ForkJoinPool-1-worker-207,5,main]
ForkJoinPool[
 Running,
 parallelism = 2,
 size = 100,
 active = 0, running = 0, steals = 100,
 tasks = 0, submissions = 0]

X

Threads Are Created To Maintain Parallelism

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Synchronizers Summary

CountDownLatch
– Makes threads wait until the latch has been counted down to zero

CyclicBarrier
– A barrier that is reset once it reaches zero

Phaser
– A flexible synchronizer in Java 7 to do latch and barrier semantics

• With less code and better interrupt management

17

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

StampedLock

18

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Motivation For StampedLock

Some constructs need a form of read/write lock

ReentrantReadWriteLock can cause starvation (next slide)
– Plus it always uses pessimistic locking

StampedLock provides optimistic locking on reads
– Which can be converted easily to a pessimistic lock

Write locks are always pessimistic
– Also called exclusive locks

19

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Read-Write Locks Refresher

ReadWriteLock interface
– The writeLock() is exclusive - only one thread at a time

– The readLock() is given to lots of threads at the same time
• Much better when mostly reads are happening

– Both locks are pessimistic

20

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bank Account With ReentrantReadWriteLock
public class BankAccountWithReadWriteLock {
 private final ReadWriteLock lock =
 new ReentrantReadWriteLock();
 private double balance;
 public void deposit(double amount) {
 lock.writeLock().lock();
 try {
 balance = balance + amount;
 } finally {
 lock.writeLock().unlock();
 }
 }
 public double getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally {
 lock.readLock().unlock();
 }
 }
}

21

The cost overhead of
the RWLock means

we need at least 2000
instructions to benefit
from the readLock()

added throughput

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

ReentrantReadWriteLock Starvation

When readers are given priority, then writers might never
be able to complete (Java 5)

But when writers are given priority, readers might be
starved (Java 6)

See http://www.javaspecialists.eu/archive/Issue165.html

22

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Java 5 ReadWriteLock Starvation

We first acquire some
read locks

We then acquire one
write lock

Despite write lock waiting,
read locks are still issued

 If enough read locks are
issued, write lock will
never get a chance and
the thread will be starved!

23

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

ReadWriteLock In Java 6

 Java 6 changed the policy and
now read locks have to wait
until the write lock has been
issued

However, now the readers can
be starved if we have a lot of
writers

24

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Synchronized vs ReentrantLock

ReentrantReadWriteLock, ReentrantLock and
synchronized locks have the same memory semantics

However, synchronized is easier to write correctly

X

synchronized(this)
 // do operation
}

rwlock.writeLock().lock();
try {
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bad Try-Finally Blocks

Either no try-finally at all:

Or the lock is locked inside the try block

Or the unlock() call is forgotten in some places altogether!

X

rwlock.writeLock().lock();
// do operation
rwlock.writeLock().unlock();

try {
 rwlock.writeLock().lock();
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

rwlock.writeLock().lock();
// do operation
// no unlock()

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Introducing StampedLock

Pros
– Has much better performance than ReentrantReadWriteLock

– Latest versions do not suffer from starvation of writers

Cons
– Idioms are more difficult to get right than with ReadWriteLock

– A small difference can make a big difference in performance

25

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: StampedLock

public class StampedLock {
 long writeLock()

 long writeLockInterruptibly()
 throws InterruptedException

 long tryWriteLock()

 long tryWriteLock(long time, TimeUnit unit)
 throws InterruptedException

 void unlockWrite(long stamp);
 boolean tryUnlockWrite();

 Lock asWriteLock();
 long tryConvertToWriteLock(long stamp);

26

Methods for managing
exclusive write locks
(pessimistic)

Methods return a number as a
stamp. A value of zero means
no write lock was granted

Stamp returned by writeLock()

Upgrade to a
write lock

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: StampedLock

public class StampedLock { (continued …)
 long readLock();

 long readLockInterruptibly()
 throws InterruptedException;

 long tryReadLock();

 long tryReadLock(long time, TimeUnit unit)
 throws InterruptedException;

 void unlockRead(long stamp);
 boolean tryUnlockRead();

 Lock asReadLock();
 long tryConvertToReadLock(long stamp);

27

Pessimistic read is
basically the same as
the write lock

Optimistic
reads to
come ...

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bank Account With StampedLock
public class BankAccountWithStampedLock {
 private final StampedLock lock = new StampedLock();
 private double balance;
 public void deposit(double amount) {
 long stamp = lock.writeLock();
 try {
 balance = balance + amount;
 } finally {
 lock.unlockWrite(stamp);
 }
 }
 public double getBalance() {
 long stamp = lock.readLock();
 try {
 return balance;
 } finally {
 lock.unlockRead(stamp);
 }
 }
}

28

The StampedLock is a lot
cheaper than

ReentrantReadWriteLock

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bank Account With Synchronized/Volatile
public class BankAccountWithVolatile {
 private volatile double balance;

 public synchronized void deposit(double amount) {
 balance = balance + amount;
 }

 public double getBalance() {
 return balance;
 }
}

X

Much easier!
Works because there

are no invariants
across the fields.

"balance" needs to be
volatile for two reasons:
1.visibility and 2.it is a

64-bit value, so access is
not necessarily atomic

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Example With Invariants Across Fields

Our Point class has x and y coordinates
– We want to make sure that they always "belong together"

29

public class MyPoint {
 private double x, y;
 private final StampedLock sl = new StampedLock();

 // method is modifying x and y, needs exclusive lock
 public void move(double deltaX, double deltaY) {
 long stamp = sl.writeLock();
 try {
 x += deltaX;
 y += deltaY;
 } finally {
 sl.unlockWrite(stamp);
 }
 }

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

30

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

31

We get a pessimistic
read lock

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

32

If the state is not the
expected state, we

unlock and exit method

Note: the general unlock() method
can unlock both read and write locks

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

33

We try convert our read
lock to a write lock

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

34

If we are able to upgrade to
a write lock (ws != 0L), we

change the state and exit

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

35

Else, we explicitly unlock the
read lock and lock the write lock

And we try again

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

36

If the state is not the
expected state, we

unlock and exit method

This could happen if between the
unlockRead() and the writeLock()
another thread changed the values

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For A Conditional State Change
public void changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

37

Because we hold the write lock,
the tryConvertToWriteLock()

method will succeed

We update the state and exit

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Applying The Code Idiom To Our Point Class
public void moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.readLock();
 try {
 while (x == oldX && y == oldY) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 x = newX; y = newY;
 break;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 } finally {
 sl.unlock(stamp);
 }
}

38

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Interface: StampedLock

public class StampedLock { (continued …)
 long tryOptimisticRead();

 boolean validate(long stamp);

 long tryConvertToOptimisticRead(long stamp);

39

Try to get an optimistic read lock
- might return zero

checks whether a write lock was issued
after the tryOptimisticRead() was called

Note: sequence validation requires stricter
ordering than apply to normal volatile reads -
a new explicit loadFence() was added

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(
 currentState1, currentState2);
}

40

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(
 currentState1, currentState2);
}

41

We get a stamp to use
for the optimistic read

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(
 currentState1, currentState2);
}

42

We read field values
into local fields

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(
 currentState1, currentState2);
}

43

Next we validate
that no write locks
have been issued
in the meanwhile

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(
 currentState1, currentState2);
}

44

If they have, then
we don't know if
our state is clean

Thus we acquire a
pessimistic read lock

and read the state
into local fields

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Optimistic Read In Point Class
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 double currentX = x, currentY = y;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentX = x;
 currentY = y;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return Math.sqrt(
 currentX * currentX + currentY * currentY);
}

45

Shorter code path in
optimistic read leads to better
read performance than with

examples in JavaDoc

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Performance Of StampedLock Vs RWLock

We researched ReentrantReadWriteLock in 2008
– Discovered serious starvation of writers (exclusive locks) in Java 5

– And also some starvation of readers in Java 6

– http://www.javaspecialists.eu/archive/Issue165.html

StampedLock released to concurrency-interest list Oct 12
– Worse writer starvation than in the ReentrantReadWriteLock

– Missed signals could cause StampedLock to deadlock

Revision 1.35 released 28th Jan 2013
– Changed to use an explicit call to loadFence()

– Writers do not get starved anymore

– Works correctly

46

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Performance Of StampedLock Vs RWLock

 In our test, we used
– lambda-8-b75-linux-x64-28_jan_2013.tar.gz

– Two CPUs, 4 Cores each, no hyperthreading
• 2x4x1

– Ubuntu 9.10

– 64-bit

– Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz
• L1-Cache: 256KiB, internal write-through instruction
• L2-Cache: 1MiB, internal write-through unified
• L3-Cache: 8MiB, internal write-back unified

– JavaSpecialists.eu server
• Never breaks a sweat delivering newsletters

47

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Conversions To Pessimistic Reads

 In our experiment, reads had to be converted to
pessimistic reads less than 10% of the time
– And in most cases, less than 1%

 This means the optimistic read worked most of the time

48

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

How Much Faster Is StampedLock Than
ReentrantReadWriteLock?

With a single thread

49

0

1

3

4

5

R=1,W=0 R=0,W=1

1.08x

0x 0x

4.43x

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k Read Speedup
Write Speedup

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

How Much Faster Is StampedLock Than
ReentrantReadWriteLock?

With four threads

50

0

1

10

100

1000

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

1.2x1.1x1.2x

0.9x

353x

12x11x

64x

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k

Read Speedup
Write Speedup

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

How Much Faster Is StampedLock Than
ReentrantReadWriteLock?

With sixteen threads

51

This demonstrates the starvation
problem on readers in RWLock

1

10

100

1000

10000

R=16,W=0 R=12,W=4 R=8,W=8 R=4,W=12 R=0,W=16

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k Read Speedup
Write Speedup

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Reader Throughput With StampedLock

X

100

1000

10000

1 2 4 8 16

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

Number of Reader Threads (no Writers)

Read Throughput
Expected (linear to n cores)

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Writer Throughput With StampedLock

52

0

0.5

1.0

1.5

2.0

1 2 4 8 16

Th
ro

ug
hp

ut
 (L

in
ea

r S
ca

le
)

Number of Writer Threads (no Readers)

Write Throughput

Note:
Linear
Scale

throughput

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mixed Reader Throughput With StampedLock

X

1

10

100

1000

10000

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

Number of Reader Threads (16 - n Writers)

Read Throughput

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mixed Reader Throughput With RWLock

X

Shows
Reader

Starvation
in RWLock

0.001

0.01

0.1

1

10

100

16151413121110 9 8 7 6 5 4 3 2 1

ReentrantReadWriteLock

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

Number of Reader Threads (16 - n Writers)

Read Throughput

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Conclusion Of Performance Analysis

StampedLock performed very well in all our tests
– Much faster than ReentrantReadWriteLock

Offers a way to do optimistic locking in Java

Good idioms have a big impact on the performance

53

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

54

Conclusion

Where to next?

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

The Art Of Multiprocessor Programming

Herlihy & Shavit
– Theoretical book on how

things work "under the hood"

– Good as background reading

X
16: C

onclusion

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

JSR 166

 http://gee.cs.oswego.edu/

Concurrency-Interest mailing list
– Usage patterns and bug reports on Phaser and StampedLock are

always welcome on the list

55

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mechanical Sympathy - Martin Thompson

Mailing list
– mechanical-sympathy@googlegroups.com

Blog
– http://mechanical-sympathy.blogspot.com

X

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Heinz Kabutz (heinz@kabutz.net)

 Full presentation available on
– kabutz.net/talks/jax13/stampedlock

– Take a pen and write that down whilst we take questions

56

Phaser and StampedLock Concurrency Synchronizers
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

57

Phaser And StampedLock
Concurrency Synchronizers

heinz@kabutz.net

kabutz.net/talks/jax13/stampedlock

